LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRD SEMESTER - NOVEMBER 2015

CH 3814 - THERMODYNAMICS & CHEM. KINETICS

Date: 05/11/2015 Time: 09:00-12:00	Dept. No.	Max.: 100 Marks	

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Mention the significance of chemical potential.
- 2. How do you classify gases in terms of their compressibility factor?
- 3. Calculate the translational heat capacities for nitrogen gas at 298 K and at 1 atm.
- 4. Predict the ground state electronic degeneracy for the terms ${}^{2}P_{3/2}$ and ${}^{2}D_{5/2}$.
- 5. What are distinguishable and indistinguishable particles? Give an example each.
- 6. Define collision number of a reaction and write the mathematical expression to calculate it for a reaction between two different molecules.
- 7. Differentiate time and true order of a reaction.
- 8. What is the significance of the ratio of partition functions when two non-liner molecules form a non-linear activated complex based on transition state theory?
- 9. The pK_a values of *p*-chlorobenzoic acid and benzoic acid are 3.98 and 4.19 respectively. Calculate the substituent constant () for *p*-Cl. (Given that, reaction constant = 1)
- 10. Draw the potential energy diagram for the formation of van't Hoff intermediate in homogeneous catalyzed reactions.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Discuss the variation of fugacity with temperature.
- 12. A flask has a capacity of 4 dm³. 3 g of O₂ and 9 g of N₂ at 27°C are added to it. Calculate a) mole fraction of each gas and b) the partial pressure.
- 13. Discuss the importance of reduced phase rule to understand the phase diagram of a ternary system.
- 14. Explain Seebeck and Peltier effects.
- 15. Define symmetry number and predict the symmetry number of PCl₅ molecule.
- 16. The difference in energy between the first excited state, ${}^{2}P_{1/2}$ of bromine atom and the ground state ${}^{2}P_{3/2}$ is 0.19eV. Calculate the electronic partition function of Br atom at 1100K.
- 17. Using appropriate diagrams discuss the potential energy surfaces in reaction kinetics.
- 18. Discuss the influence of dielectric constant of the medium on the rate of ionic reactions in solution.
- 19. Explain Langumuir-Hishelwood mechanism for bimolecular surface reactions with an example.
- 20a. What are reversible inhibitors?
 - b. Calculate the degree of inhibition if the rate of the reaction, $2.1 \times 10^{-4} \text{ Ms}^{-1}$ is decreased by a factor of 3.2, in the presence of $5 \times 10^{-5} \text{ M}$ of competitive inhibitor. (2+3)
- 21. Explain the kinetics of consecutive reactions with relevant graph.
- 22. Write the principle of flow techniques and explain any one flow method to study the kinetics of fast reactions.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23a. What is Ellingham's plot? How does it help to understand extraction of metals?
 - b. Calculate the molar residual entropy of a crystal in which the molecules can adopt seven orientations of equal energy at 0 K. (6+4)
- 24a. Discuss the entropy production in chemical reactions.
 - b. Calculate the rotaional partition function for hydrogen molecules at 300 K. Moment of inertia of H_2 is $4.59 \times 10^{-47} \text{ kgm}^2$. (6+4)
- 25a. How is rotational energy derived from rotational partition function?
 - b. Calculate the translational energy and translational enthalpy for oxygen gas at 298 K and at 1 atm.

(6+4)

- 26a. Derive Eyring equation which connects rate constant and thermodynamic parameters of a reaction.
 - b. Calculate the number of collisions per second in one cubic centimeter of oxygen at 298 K and 101.3 k_{Pa} pressure. (The diameter of oxygen molecule = 2.92 Å) (6+4)
- 27a. Discuss the effect of substrate concentration on single substrate enzymatic reaction.
 - b. The Wolff plot for an enzyme catalyzed reaction has a straight line with the y-intercept of 41.25 min and slope equal to 4020 L mol^{-1} min. Evaluate $_{\text{max}}$ and K_{M} for the reaction. (7+3)
- 28a. Explain the kinetics of hydrogen-chlorine thermal chain reaction.
 - b. Write a note on first and second explosion limits for H_2 - O_2 branched chain reaction. (6+4)
